
1

SENG202 – Software Engineering Project Workshop

20191

Outline

1. Introduction
SENG202 is a project-based software engineering course for the first professional year of the BE

(HONS) Software Engineering programme. It builds on, applies and extends material introduced in

SENG201 (software engineering processes, analysis, design, testing, object-oriented programming in

Java) in a professional environment. The course mirrors work habits from industry, including

teamwork, basic project management, automated testing, revision control, and incremental / iterative

development. Furthermore, the course allows students to reflect on their own practices as well as on

the practices of their peers. The focus is on acquiring and developing individual professional skills and

demonstrating them in both individual and group context. Students will work in randomly assigned

teams of students.

By exposing students to state-of-the-art tools and approaches to developing comprehensive software

systems, SENG202 bridges the gap between individual or pairwise programming assignments (e.g., in

COSC121, COSC122, SENG201) and major group projects (e.g., in SENG302). The course is practice-

based and will be the first opportunity for students to undertake a sizeable piece of practical work

that spans sufficient time to expose some of the complexities of modern software development in a

controlled fashion.

2. Course format
The course consists of lectures, lab and scheduled workshop sessions.

 One one-hour lecture per week: In addition to introducing material on relevant tools and

techniques, lectures will also be used to introduce project tasks, manage groups, give general

feedback and steer the project tasks in whole-class discussions. Also, lecture slots may be used

for project work. Students are expected to attend all lectures2.

 Two two-hour laboratories / workshops per week: Labs and workshops include unstructured

activities (students will work on their project and be able to ask questions to the staff), as well

as structured lab sessions and tutorials to teach essential skills, such as source code control

and development environments. The labs are also an opportunity for the groups to present

their on-going work to the class, including presentations of deliverables. There are no lab

streams but students are expected to attend all labs. Labs will also be used for occasional

quizzes. Note that quizzes and presentations contribute to overall course assessment.

1 Last updated 10th July 2019
2 Lectures are not normally recorded

2

Important note: Students will be engaged in a medium-complexity software engineering project.

Therefore, students are expected to work additional hours in their own time, either having group

meetings or working on their software development project.

3. Course goal and content
This course aims at developing basic individual professional and technical skills required to perform

the software engineer role in the development of large and complex software-based systems, which

are built in teams and which evolve over their lifetime. In addition to general professional skills,

students will learn and practice skills and techniques peculiar to software engineering and software

development. The course aims at simulating a real-world project, exposing students to problems faced

when developing non-trivial software systems, mirroring work habits from industry, and giving

students an opportunity to reflect on their own practices. The course will cover the following topics

and related learning outcomes:

Requirements

 Understand and explain the typical difficulties of technical communication

 Analyse product requirements and project scope

 Explain typical requirements-related problems

 Recognize good and bad requirements

Design

 Design a software product

 Explain and apply good design principles

 Recognize and describe the importance of good design

 Understand different design alternatives and their impact on software quality

Implementation

 Implement high-quality code from a design using tools, environments and frameworks

 Identify, review and apply existing code, libraries and packages

 Improve code quality and productivity by using software tools

 Understand and apply revision control

 Break up implementation work into units for parallel implementation

 Coordinate implementation efforts in a team using a code repository

Testing

 Test code with unit tests, acceptance tests, system tests, and user tests

 Understand and apply unit testing frameworks

 Understand and apply continuous testing

Other process-related aspects

 Work in a group setting

 Apply methods for identifying and mitigating software project risks

 Critically reflect on own practices and performance and practice and performance of others

 Understand, plan and document all phases of a software development project

 Present work to peers and non-technical audiences

 Analyse and solve technology based problems in a technology based environment

The key personal attributes that will be developed include problem-solving ability, practical research

skills, ability to work effectively on an unexplored topic of relevance for professional software

engineers, and written and oral communication skills. Students will also develop their ability to apply

3

creative and critical thinking to the solving of professional challenges (e.g., adapting and tailoring

standard methodologies for use in specific contexts). Furthermore, after completing this course,

students will be able to better cope with tasks related to unfamiliar topics, and feel more comfortable

speaking to a public audience. The points outlined above allow students to practice:

 Intellectual independence, critical thinking and analytic rigour

 Self-directed learning

 Skills to acquire, understand, assess information from a range of sources

 Communication and collaborative skills.

4. Assessment
This course will not include written exams. Performance of students will be internally assessed.

Note that the deliverables include presentations to the class.

Item Description Date* Weight

Quizzes Online quizzes in labs Throughout semester 20%

Deliverable 1 See instructions August 13, 2019 25%

Deliverable 2 See instructions September 24, 2019 25%

Deliverable 3 + demo See instructions October 14, 2019 30%

Demo Demo to staff Lecture/labs week 12 25% of Deliverable 3

*Deliverables need to be submitted by 5:00pm on the submission date. There is no drop-dead date.

Important notes:

 Students must record project activities. If a student does not record activities for a phase, this

phase will be considered as “failed” for that student.

 Students will be penalized for unprofessional practice (e.g., missing presentations, missing

scheduled sessions, not following submission guidelines, etc.). Professional behaviour will be

assessed for each project deliverable.

 Project deliverables will be tested and must run on the platform and environment provided in

the computer labs. This means deliverables must be buildable and runnable on the

environment provided by the department on the lab machines (including the operating

system, version of Java, IDEs, etc.).

 The final product will be demonstrated to teaching staff (lecturers, tutors). Each team will

have 20 minutes to demonstrate their product and to answer questions about their project,

process and product.

 Students who do well in SENG202 show balanced code/non-code contributions to the project,

demonstrate strong teamwork and leadership skills, and are confident and engaging in

presentations.

Your performance is monitored throughout the course and the assessment team will consider your

portfolio of achievements when determining your final grade. You will work as part of a team

throughout the semester and assessment will be an on-going process that gauges the quality of your

individual contributions. You will be assessed individually, but the success of your team will

significantly influence your personal results.

4

You final grade will be determined not just by the quality of the code you write but also by factors

such as the level of professionalism, the quality of reports and presentations, the quality of software

development artefacts (test cases, diagrams, etc.) and the way you contribute to your group. Please

note that late work cannot be accepted for any of the SENG202 items (no drop-dead date).

In order to pass the course you must meet the absolute passing mark for the class. In other words, the

percentage on all your scored items must meet the absolute passing mark set for the class. Marks are

sometimes scaled to achieve consistency between courses from year to year, thus, specific passing

marks are identified on a class by class basis. For example, a total mark of 50% would typically be

required to achieve a C pass, but this will vary. A C pass indicates that we believe you have (just)

mastered the material in the course. Your ranking in the class may be a more useful indicator of your

progress; students ranked above you will receive higher grades, and vice versa.

There are several important documents available online about UC and departmental regulations,

policies and guidelines. You will find most of them at http://www.csse.canterbury.ac.nz/resources/

and https://www.canterbury.ac.nz/media/documents/brochure/UC-Calendar.pdf. We expect all

students to be familiar with these.

You are encouraged to discuss the project with others. However, anything you submit for credit must

be entirely your own work and not copied, with or without modification, from any other person unless

appropriate acknowledgements and citations are provided. If you need help with specific details

relating to your work, or are not sure what you are allowed to do, then contact your tutors or lecturer

for advice.

Students may apply for special consideration if their performance in an assessment is affected by

extenuating circumstances beyond their control. Applications for special consideration should be

submitted via the Examinations Office website http://www.canterbury.ac.nz/exams within five days

of the assessment. Where an extension may be granted for an assessment, this will be decided by

direct application to the course coordinator and an application to the Examinations Office may not be

required. Special consideration is not available for items worth less than 10% of the course and/or the

following items of assessment: n/a. Students prevented by extenuating circumstances from

completing the course after the final date for withdrawing, may apply for special consideration for

late discontinuation of the course. Applications must be submitted to the Examinations Office within

five days of the end of the main examination period for the semester.

5. Prerequisites and recommended preparation
Prerequisites are SENG201 and subject to approval by Dean of Engineering and Forestry. Students

should have a basic understanding of software development and software engineering. SENG202 is

restricted to and mandatory for BE (HONS) Software Engineering students.

http://www.csse.canterbury.ac.nz/resources/
https://www.canterbury.ac.nz/media/documents/brochure/UC-Calendar.pdf

5

6. Teaching staff

 Neville Churcher (lecturer), neville.churcher@canterbury.ac.nz

 Andreas Willig (course supervisor), andreas.willig@canterbury.ac.nz

 Patricia Inez (senior tutor), patricia.inez@canterbury.ac.nz

 Marina Filipovic (senior tutor), marina.filipovic@canterbury.ac.nz

 Maree Palmer (tutor and tech support), mpa588@uclive.ac.nz

 Jack Steel (tutor and tech support), jes143@uclive.ac.nz

Office hours: by appointment.

7. Textbooks and recommended reading
Software engineering

 I. Sommerville. Software Engineering

 R.S. Pressman. Software Engineering: A Practitioner’s Approach

Java

 C. Horstmann. Big Java

 C. Horstmann. Object-oriented Design and Patterns

 B. McLaughlin et al. Object-Oriented Analysis & Design

 E. Freemann et al. Head First Design Patterns

Websites

 Stack Overflow (stackoverflow.com)

 Blogs, forums, Google, etc.

Others as required

 API’s, documentation, notes on Learn, etc.

mailto:patricia.inez@canterbury.ac.nz
mailto:marina.filipovic@canterbury.ac.nz
mailto:mpa588@uclive.ac.nz
mailto:jes143@uclive.ac.nz

